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Abstract

This supplementary material contains additional content
that supports our paper, including theoretical foundations,
proofs, and experimental studies. Specifically, in Section
1, we provide a concise overview of the Nyström method
to highlight its random approximation scheme. Theoretical
proofs of the approximation bound for our Laplacian ker-
nel are presented in Section 2. Furthermore, in Section 3,
we empirically explore the advantages of our newly defined
function, complementing the theoretical analysis. Finally,
in Section 4, we present more qualitative comparison re-
sults and demonstrate the versatility of our method on shape
transfer.

1. Nyström Low-Rank Approximation
The Nyström method is introduced by [2] to improve the
efficiency of kernel machines. It was initially developed to
address the integral equation given by:∫

p(y)K(x, y)ϕi(y)dy = λiϕi(x), (1)

where p(y) represents the probabilistic density function,
K(x, y) is the kernel function, and ϕi and λi denote the
unknown eigenfunctions and eigenvalues, separately. The
integral equation can be approximated by taking the empir-
ical average:

1

q

q∑
j=1

K(x, xj)ϕi(xj)≃ λiϕi(x), (2)

where {x1, x2, · · · , xq} are sampled from p(x). By substi-
tuting x ∈ {x1, x2, · · · , xq} in Eq. (2), we get

KU = UΛ, (3)

where K = K(xi, xj) ∈ Rq×q represents the kernel matrix,
U ∈ Rq×q is the orthogonal matrix, and Λ ∈ Rq×q denotes

the diagonal matrix containing the eigenvalues. Therefore,
the eigenfunctions and eigenvalues in Eq. (1) can be esti-
mated by [2]

ϕi(xj) ≃
√
qUji, λi ≃ λ

(q)
i /q. (4)

This observation suggests that various subsets of size q pro-
vide approximate representations of the original eigenfunc-
tions ϕi and eigenvalues λi [3]. Hence, the Nyström method
involves randomly selecting a subset Z = {zi}mi=1 from the
input data {xi}ni=1 in order to approximate the complete
kernel matrix K, as follows

ΦK ≃
√
m

n
EΦZΛZ

−1,ΛK ≃ n

m
ΛZ . (5)

Here E ∈ Rn×m and ΦZ ,ΛZ ∈ Rm×m represent the cor-
responding eigenvector and eigenvalue matrices of W =
K(zi, zj) ∈ Rm×m, respectively. Ultimately, the low-rank
approximation of the kernel matrix K can be expressed as
follows [2]:
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(√

m

n
EΦZΛZ
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)(√
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−1

)T

= EW−1ET .
(6)

As discussed above, the effectiveness of the Nyström
method may be uncertain due to its random approximation
scheme.

2. Theoretical Proof
In contrast to the conventional Nyström method mentioned
above, our clustering-improved method provides a rigorous
approximation bound specifically tailored to the Laplacian
kernel utilized in our approach.

Lemma 1. [3] Suppose (K(a, b) − K(c, d))2 ≤
Ck

X
(
∥a− c∥2 + ∥b− d∥2

)
,∀a, b, c, d, then the error of

the general Nyström low-rank approximation ϵ = ∥L −
EW−1ET ∥F is bounded by

E ≤ 4T
√
mCk

X eT +mCk
XTe∥W−1∥F (7)



where T = maxk |Sk|, and e =
∑n

i= |xi − zc(i)∥2 is the
total quantization error of coding each sample xi ∈ X with
the closest landmark point zj ∈ Z .

Proposition 1. The low-rank approximation error ϵ =
∥L − EW−1ET ∥F in terms of the Laplacian kernel is
bounded by

ϵ ≤ 4
√
2T 3/2γ

√
C ′q + 2C ′γ2Tq∥W−1∥F , (8)

where ∥·∥F is the matrix Frobenious norm, T = maxi |Pi|,
q =

∑C
j=1 ∥yj − zc′(j)∥22 is the clustering quantization

error with c′(j) = argmini=1,··· ,C′∥yj − zi∥2, and γ is
the Laplacian kernel bandwidth defined in K(yi,yj) =
exp(−γ∥yi − yj∥1).

Proof. Given four samples, yi, yj , ym, and yn ∈ Y, ac-
cording to triangular inequality, we have

∥yi−yj∥1 ≤ ∥ym−yn∥1+∥yi−ym∥1+∥yj−yn∥1 (9)

and

∥ym−yn∥1 ≤ ∥yi−yj∥1+∥ym−yi∥1+∥yn−yj∥1. (10)

Based on Lagrange’s mean value theorem, for two Lapla-
cian kernel functions K(yi,yj) and K(ym,yn), we have

(K(yi,yj)−K(ym,yn))
2

= (exp(−γ∥yi − yj∥1)− exp(−γ∥ym − yn∥1))2

= (K ′(ψ)(−γ(∥yi − yj∥1 − ∥ym − yn∥1)))2

≤ (K ′(ψ)γ)2(∥yi − ym∥1 + ∥yj − yn∥1)2

≤ 2(K ′(ψ)γ)2(∥yi − ym∥1 + ∥yj − yn∥1)2,

(11)

where K ′(ψ) is the derivative of the Laplacian kernel with
ψ ≥ 0. According to Lemma 1, we take CK

Y = 2γ2, which
concludes that

ϵ ≤ 4
√
2T 3/2γ

√
C ′q + 2C ′γ2Tq∥W−1∥F . (12)

3. Study of the Newly Defined Function
In addition to the theoretical analysis (from both informa-
tion theory and convex optimization perspectives) presented
in the paper, we have conducted additional experiments
to further demonstrate the effectiveness of our newly de-
fined non-rigid registration approach. To this end, we vary
λ ∈ [0.06, 2.1] and register the source bunny to the de-
formed one.

The statistical results, summarized in Fig. 1, provide
valuable insights into the performance of our method.
These results demonstrate that our approach achieves
higher-quality deformations and requires fewer iterations
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Figure 1. Investigation of the advantages of our newly defined
registration function by varying λ.

(a) Source (b) Laplacian (c) Gaussian (d) Target
Figure 2. Qualitative comparisons between the Laplacian and
Gaussian kernels with the noise level equating to 0.02. The Lapla-
cian kernel delivers more accurate registration results.

when the algorithm converges within the range of λ ∈
[0.3, 1]. Deviation from this optimal range, either with
smaller or larger values of λ, leads to less accurate regis-
trations and increases the number of iterations required for
convergence. This finding can be well explained by consid-
ering the impact of λ on the registration process. A smaller
value of λ reduces the influence of entropy and convexity,
potentially compromising the accuracy of the registration.
On the other hand, a larger value of λ pulls the original ob-
jective function towards a completely convex one, introduc-
ing more deviations and necessitating additional iterations
to achieve convergence, even under the same convergence
threshold.

4. More Qualitative Results
We provide further qualitative comparison results from
Fig. 2 to Fig. 4. Moreover, we showcase the versatility
of our proposed method by demonstrating additional shape
transfer results in Fig. 5 utilizing models sourced from the
ShapeNet dataset [1].
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(a) Input (b) MR-RPM (c) BCPD (d) GMMReg (e) ZAC (f) Ours

Figure 3. Qualitative comparisons on the hand pose dataset with occlusion (first row) and noise (the remaining rows) disturbances.
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Figure 4. More qualitative comparison results on the FAUST dataset.
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Figure 5. Application of the proposed method to shape transfer. The models airplane and boat are from the ShapeNet dataset [1].
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