# Structure-Aware Surface Reconstruction via Primitive Assembly

Jingen Jiang<sup>1,2,3,4\*</sup>, Mingyang Zhao<sup>1,5\*</sup>, Shiqing Xin<sup>4</sup>, Yanchao Yang<sup>6</sup>, Hanxiao Wang<sup>1,3</sup>, Xiaohong Jia<sup>2,3</sup>, Dong-Ming Yan<sup>1,3†</sup>

<sup>1</sup>MAIS & NLPR, CASIA <sup>2</sup>KLMM, AMSS, CAS <sup>3</sup>UCAS <sup>4</sup>Shandong University <sup>5</sup>BAAI <sup>6</sup>The University of Hong Kong



#### Introcuction



- Fast, feature-preserving reconstruction is a highly coveted technique in geometric modeling. Implicit methods have difficulty preserving sharp features, while plane-based assembly methods can be time-consuming and less accurate when handling complex objects.
- We propose a novel and efficient
   method for reconstructing manifold surfaces from point clouds by assembling
   primitives.

## Overview



Fig.2: Overview of the our method.

Fig.2 represents the main steps of our method:

- We first extract primitives from point cloud and use arrangement algorithm to generate candidate patches. (a)→(b)
- Then, we introduce an effective pruning mechanism to discard redundant patches and speed up surface extraction a lot. (b) $\rightarrow$ (c)
- The optimal patches are selected by binary linear programming and assembled as manifold and watertight surfaces. (c) $\rightarrow$ (d)

The **significant time gap** between the two routes (**black** and **red**) demonstrates the effectiveness of our pruning mechanism which is our core contribution.

## Pruning



Fig.3: Visual description of patch pruning.

The proposed pruning mechanism is composed of two steps, initialization and pruning, as presented subsequently.

- Initialization: We first select a set of representative triangle meshes (colored blue) with high point coverage.
- **Pruning:** Next, representative triangle meshes are propagated around. however, some triangles (colored **yellow**) will not be propagated since the block from propagated triangles (colored **orange**) from another primitive. All unpropagaed triangles will be discarded.

#### **Surface Extraction**

### Patch-induced binary linear programming:

$$\min_{\mathcal{X}_{\tilde{\mathcal{M}}}} \mathbf{U}(\mathcal{X}_{\tilde{\mathcal{M}}}) + \lambda \mathbf{B}(\mathcal{X}_{\tilde{\mathcal{M}}}),$$

$$s.t. \begin{cases}
\sum_{\tilde{m}_{i} \cap \tilde{m}_{j} \neq \emptyset, i \neq j} (x_{\tilde{m}_{i}} + x_{\tilde{m}_{j}}) = 0 \text{ or } 2, \tilde{m}_{i}, \tilde{m}_{j} \in \tilde{\mathcal{M}} \\
x_{\tilde{m}_{i}} \in \{0, 1\}, \quad i = 1, 2, 3 \dots |\tilde{\mathcal{M}}|.
\end{cases}$$

### Fidelity loss:

### **Complexity loss:**

$$\mathbf{U}(\mathcal{X}_{\tilde{M}}) = \sum_{\tilde{m} \in \tilde{\mathcal{M}}} x_{\tilde{m}} \cdot \left( \frac{\mathcal{A}_{\tilde{m}} - \bar{\mathcal{A}}_{\tilde{m}}}{\mathcal{A}} - \frac{|\mathcal{P}_{\tilde{m}}|}{|\mathcal{P}|} \right) \qquad \mathbf{B}(\mathcal{X}_{\tilde{\mathcal{M}}}) = \frac{1}{L} \sum_{i,j} |\mathcal{C}_{ij}| \cdot x_{\tilde{m}_i} \cdot x_{\tilde{m}_j}$$

# **Experiments & Application**



Tab.2 : Numerical comparisons on the ABC300 dataset.

4.06

32.800

26.43

4.208

553.089

15.87

183.844

## **Conclusion & Contribution**

**Metrics** 

SMH (%)

Time (s)

To summarize, the main technical contributions include: :

24.89

1565.217

- An efficient structure-aware reconstruction method that produces accurate surface models while preserving the underlying intrinsic primitive structures of the input point clouds.
- A patch pruning technique that avoids the time-consuming global collision detection and accelerates the surface extraction by a large margin.
- A patch-induced binary linear programming for assembling manifold and watertight surfaces from candidate active patches, which significantly reduces the search space and helps achieve efficient and accurate surface reconstruction.